资源类型

期刊论文 65

会议视频 2

年份

2023 4

2022 9

2021 7

2020 3

2019 5

2018 4

2017 3

2016 3

2015 1

2014 1

2012 2

2011 4

2010 5

2009 2

2008 4

2007 4

2006 2

2005 1

2004 1

2000 1

展开 ︾

关键词

生物柴油 2

三酰甘油 1

丝孢堆黑粉菌 1

产业融合 1

人工增雨 1

人工影响天气 1

人工消雾 1

人工防雹 1

价值提升 1

传热过程 1

低光增强;过滤—群聚注意力;密集连接金字塔;递归网络 1

信号叠加 1

信号增强 1

共沸 1

农业全产业链 1

分子动力学模拟 1

分层自适应神经模糊推理系统控制器;晶闸管控制串联电容器补偿技术;自动发电控制(AGC);多目标粒子群优化算法;电力系统动态稳定性;相互联系的多源电力系统 1

卫星导航,北斗,“一带一路”,应用推广,示范应用 1

展开 ︾

检索范围:

排序: 展示方式:

Flow boiling heat transfer in circulating fluidized bed

Xiaoguang REN , Jiangdong ZHENG , Sefiane KHELLIl , Arumemi-Ikhide MICHAEL ,

《能源前沿(英文)》 2009年 第3卷 第1期   页码 85-89 doi: 10.1007/s11708-008-0067-5

摘要: In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

关键词: vapor-liquid-solid three phase     flow boiling heat transfer     circulating fluidized bed    

Nucleate boiling in two types of vertical narrow channels

Lei GUO, Shusheng ZHANG, Lin CHENG

《能源前沿(英文)》 2011年 第5卷 第3期   页码 250-256 doi: 10.1007/s11708-010-0128-4

摘要: To explore the mechanism of boiling bubble dynamics in narrow channels, we investigate 2-mm wide I- and Z-shaped channels. The influence of wall contact angle on bubble generation and growth is studied using numerical simulation. The relationships between different channel shapes and the pressure drop are also examined, taking into account the effects of gravity, surface tension, and wall adhesion. The wall contact angle imposes considerable influence over the morphology of bubbles. The smaller the wall contact angle, the rounder the bubbles, and the less time the bubbles take to depart from the wall. Otherwise, the bubbles experience more difficulty in departure. Variations in the contact angle also affect the heat transfer coefficient. The greater the wall contact angle, the larger the bubble-covered area. Therefore, wall thermal resistance increases, bubble nucleation is suppressed, and the heat transfer coefficient is lowered. The role of surface tension in boiling heat transfer is considerably more important than that of gravity in narrow channels. The generation of bubbles dramatically disturbs the boundary layer, and the bubble bottom micro-layer can enhance heat transfer. The heat transfer coefficient of Z-shaped channels is larger than that of the I-shaped type, and the pressure drop of the former is clearly higher.

关键词: nucleate boiling     narrow channel     numerical simulation     bubble dynamics    

Tubes with coated and sintered porous surface for highly efficient heat exchangers

Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 367-375 doi: 10.1007/s11705-018-1703-1

摘要:

Surface modification is a direct and effective way to enhance the efficiency of heat exchangers. Surface modification by forming a microporous coated layer can greatly enhance the boiling heat transfer and thus achieve a high performance. In this paper, we systematically investigate the boiling behavior on a plain surface with/without sintered microporous coatings of copper powder. The results demonstrated that the sintered surface has a better performance in nucleate boiling due to the increased nucleation sites. The superheat degree is lower and the bubble departure diameter is larger for the sintered surface than for the plain surface, so the heat can be carried away more efficiently on the sintered surface. In addition, the heat transfer capacity on the sintered surface depends on both the powder size and the coating thickness for a high flux tube. The optimum heat transfer capacity can be obtained when the thickness of the microporous coating layer is 3–5 times of the sintered powder diameter. As a result, the heat transfer coefficient tube can be up to 3 times higher for the tube with a sintered surface than that with a plain surface, showing a pronounced enhancement in heat transfer and a high potential in chemical engineering industry application.

关键词: microporous coating layer     surface modification     boiling enhancement     sintering    

Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal

Xin ZOU, Maoqiong GONG, Gaofei CHEN, Zhaohu SUN, Jianfeng WU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 527-534 doi: 10.1007/s11708-010-0109-7

摘要: An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m ·s) and heat fluxes ranging from 13.1 to 65.5 kW/m . The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within±30%.

关键词: flow boiling     heat transfer     binary mixture     R290/R152a    

低高宽比矩形微通道中流动沸腾的压降特性

张炳雷,徐进良,肖泽军

《中国工程科学》 2007年 第9卷 第12期   页码 86-93

摘要: 以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用LockhartMartinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Lee and Lee,Mishima及Qu and Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通

关键词: 压降特性;均相模型;分相模型;微通道;流动沸腾    

Experimental study of the effects of structured surface geometry on water spray cooling performance in non-boiling

Minghou LIU, Yaqing WANG, Dong LIU, Kan XU, Yiliang CHEN

《能源前沿(英文)》 2011年 第5卷 第1期   页码 75-82 doi: 10.1007/s11708-010-0014-0

摘要: Experiments were conducted to study the effects of enhanced surfaces on heat transfer performance during water spray cooling in non-boiling regime. The surface enhancement is straight fin. The structures were machined on the top surface of heated copper blocks with a cross-sectional area of 10 mm×10 mm. The spray was performed using Unijet full cone nozzles with a volumetric flux of 0.044–0.053 m /(m ·s) and a nozzle height of 17 mm. It is found that the heat transfer is obviously enhanced for straight fin surfaces relative to the flat surface. However, the increment decreases as the fin height increases. For flat surface and enhanced surfaces with a fin height of 0.1 mm and 0.2 mm, as the coolant flux increases, the heat flux increases as well. However, for finned surface with a height of 0.4 mm, the heat flux is not sensitive to the coolant volumetric flux. Changed film thickness and the form of water/surface interaction due to an enhanced surface structure (different fin height) are the main reasons for changing of the local heat transfer coefficient.

关键词: spray cooling     finned surface     heat transfer    

Turbidity-adaptive underwater image enhancement method using image fusion

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-021-0669-8

摘要: Clear, correct imaging is a prerequisite for underwater operations. In real freshwater environment including rivers and lakes, the water bodies are usually turbid and dynamic, which brings extra troubles to quality of imaging due to color deviation and suspended particulate. Most of the existing underwater imaging methods focus on relatively clear underwater environment, it is uncertain that if those methods can work well in turbid and dynamic underwater environments. In this paper, we propose a turbidity-adaptive underwater image enhancement method. To deal with attenuation and scattering of varying degree, the turbidity is detected by the histogram of images. Based on the detection result, different image enhancement strategies are designed to deal with the problem of color deviation and blurring. The proposed method is verified by an underwater image dataset captured in real underwater environment. The result is evaluated by image metrics including structure similarity index measure, underwater color image quality evaluation metric, and speeded-up robust features. Test results exhibit that the method can correct the color deviation and improve the quality of underwater images.

关键词: turbidity     underwater image enhancement     image fusion     underwater robots     visibility    

基于学习自适应区域选择的自动增强图像 None

Na LI, Jian ZHAN

《信息与电子工程前沿(英文)》 2019年 第20卷 第2期   页码 206-221 doi: 10.1631/FITEE.1700125

摘要: 如今数码相机被广泛用于日常摄影。然而,部分照片缺乏细节,需要增强处理。很多现有图像增强算法基于局部区域,而且同一图像所选区域尺寸通常是固定的。用户需手工选择合适的区域尺寸获取最佳图像增强效果。提出一种基于自适应区域选择的自动增强图像算法。该算法采用明暗两个通道,解决各类图像曝光问题。对网上爬取的大量自然图像统计分析获取阈值,自动选择用于通道提取的区域尺寸。该方法可自动增强模糊或者曝光不足/背光的图像,无需任何用户交互。实验结果表明,该算法对现有基于区域的图像增强算法有显著改进。

关键词: 图像增强;对比度增强;暗通道;明通道;自适应区域处理    

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based

TAO Wenquan, WU Junmei

《能源前沿(英文)》 2008年 第2卷 第1期   页码 71-78 doi: 10.1007/s11708-008-0001-x

摘要: 3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.

关键词: inherent mechanism     integral     surface     rectanglar     longitudinal    

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 131-143 doi: 10.1007/s11709-021-0787-8

摘要: This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

关键词: RC beams     flexural     strengthening     CFRP     CNTs     finite element    

Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

WU Junmei, TAO Wenquan

《能源前沿(英文)》 2007年 第1卷 第3期   页码 365-369 doi: 10.1007/s11708-007-0055-1

摘要: Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators. The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30º and 45º) of a delta winglet vortex generator are examined. The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex. The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients. In addition, the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface. The heat transfer enhancement of the delta winglet pairs with an attack angle of 45º is larger than that with an angle of 30º. The delta winglet pair with an attack angle of 45º leads to an increase in pressure drop, while the delta winglet pair with the 30º angle results in a slight decrease. The heat transfer enhancement under identical pumping power condition for the attack angle of 30º is larger than that for the attack angle of 45º either for staggered or for aligned tube bank arrangement.

关键词: computational     inherent mechanism     staggered     decrease     transfer surface    

Wavelet-based iterative data enhancement for implementation in purification of modal frequency for extremely

Hassan YOUSEFI, Alireza TAGHAVI KANI, Iradj MAHMOUDZADEH KANI, Soheil MOHAMMADI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 446-472 doi: 10.1007/s11709-019-0605-8

摘要: The main purpose of the present study is to enhance high-level noisy data by a wavelet-based iterative filtering algorithm for identification of natural frequencies during ambient wind vibrational tests on a petrochemical process tower. Most of denoising methods fail to filter such noise properly. Both the signal-to-noise ratio and the peak signal-to-noise ratio are small. Multiresolution-based one-step and variational-based filtering methods fail to denoise properly with thresholds obtained by theoretical or empirical method. Due to the fact that it is impossible to completely denoise such high-level noisy data, the enhancing approach is used to improve the data quality, which is the main novelty from the application point of view here. For this iterative method, a simple computational approach is proposed to estimate the dynamic threshold values. Hence, different thresholds can be obtained for different recorded signals in one ambient test. This is in contrast to commonly used approaches recommending one global threshold estimated mainly by an empirical method. After the enhancements, modal frequencies are directly detected by the cross wavelet transform (XWT), the spectral power density and autocorrelation of wavelet coefficients. Estimated frequencies are then compared with those of an undamaged-model, simulated by the finite element method.

关键词: ambient vibration test     high level noise     iterative signal enhancement     wavelet     cross and autocorrelation of wavelets    

Numerical simulation of micro scale flowing and boiling

Wen WANG, Rui ZHUAN,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 396-401 doi: 10.1007/s11708-009-0049-2

摘要: Numerical simulations of flowing and boiling in micro channels are presented, including the modeling of bubble dynamics of nucleate boiling, and a description of the interface of two phases with the volume-of-fluid (VOF). The two calculated cases are compared with related experimental data in literature. Some simulated results are found corresponding well to the experimental data. The simulated results also show the details of 3-dimensional heat transfer and the flow in micro channels, which are helpful to the investigation of the mechanism of two-phase heat transfer and flow in micro channels.

关键词: volume-of-fluid (VOF)     micro channel     nucleate boiling     bubble dynamics     simulation    

标题 作者 时间 类型 操作

Flow boiling heat transfer in circulating fluidized bed

Xiaoguang REN , Jiangdong ZHENG , Sefiane KHELLIl , Arumemi-Ikhide MICHAEL ,

期刊论文

Nucleate boiling in two types of vertical narrow channels

Lei GUO, Shusheng ZHANG, Lin CHENG

期刊论文

Tubes with coated and sintered porous surface for highly efficient heat exchangers

Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu

期刊论文

Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal

Xin ZOU, Maoqiong GONG, Gaofei CHEN, Zhaohu SUN, Jianfeng WU

期刊论文

低高宽比矩形微通道中流动沸腾的压降特性

张炳雷,徐进良,肖泽军

期刊论文

Experimental study of the effects of structured surface geometry on water spray cooling performance in non-boiling

Minghou LIU, Yaqing WANG, Dong LIU, Kan XU, Yiliang CHEN

期刊论文

Turbidity-adaptive underwater image enhancement method using image fusion

期刊论文

基于学习自适应区域选择的自动增强图像

Na LI, Jian ZHAN

期刊论文

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

期刊论文

Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based

TAO Wenquan, WU Junmei

期刊论文

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

期刊论文

Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

WU Junmei, TAO Wenquan

期刊论文

Wavelet-based iterative data enhancement for implementation in purification of modal frequency for extremely

Hassan YOUSEFI, Alireza TAGHAVI KANI, Iradj MAHMOUDZADEH KANI, Soheil MOHAMMADI

期刊论文

Numerical simulation of micro scale flowing and boiling

Wen WANG, Rui ZHUAN,

期刊论文